SAM Fall Technical Meeting September 22, 2004 San Diego, CA

Results of Vapor Pathway Investigation of Homes over Petroleum Impacted Soils

G. Todd Ririe
Unocal

Hydrocarbon Vapor Pathway Important Industry Issues

- Development of oil field and retail sites will continue to be priorities.
- More information is needed on good sample collection and analytical techniques.
- More good field data is needed to validate and refine the models.
- Consistent regulatory guidance is needed.
- Appropriate attenuation factors need to be used.

Case Studies Summary

- A total of 7 case studies have been completed for homes within the Santa Maria Valley Oil & Gas field
- All sites are near historical oil production wells and/or associated sump and tank batteries
- Homes were constructed in early to mid 1990's

Site Conditions

- Surficial soils are silty sands, moisture content highly variable as a function of irrigation
- Screened soils were used as backfill on some sites and contained small < 0.5 inch diameter clasts of asphaltic material
- Soils were compacted to greater than 90% prior to construction
- Topsoil and subsoil were mixed prior to construction of homes
- Most homes had TPH values in soils much less than 100 ppm while one home had values up to 57,000 ppm at a depth of 10 feet

Some Site Issues

- Homeowners at two sites claim elevated methane levels are killing plants
- 2) Homeowners claim high methane levels in soils may be cause for concern to indoor air
- 3) Homeowners hire attorney and consultant to collect data and threaten lawsuit
- 4) Concerns about property values
- 5) Local and regional press cover the issue
- 6) Local regulators approved all development

Site Workplan for Each Property

- Collect vertical soil gas profiles in front and back yard to depth of 10 ft and under slab to depth of 5 ft-analyze for fixed gases and H₂S.
- Collect soil samples from vertical profiles at two locations to depth of 10 ft-analyze for TPH and physical properties.
- Collect soil data necessary to evaluate cause(s) of plant stress
- Collect isotopic data on soil gases to evaluate source and age

Preparing Soil for Construction

Healthy & Dead Plants in Park

Soil Evaluation-Homeowners plants were stressed

Results of Plant Stress Evaluation

- Tree roots confined to upper 4 inches of soil
- No evidence of topsoil
- Reducing conditions noted below 17 inches
- Penetrometer readings: 3.5-4.5 tons/ft² (good garden soil = 0.5 tons/ft²)
- Percolation rates=152-176 minutes/inch @ 6 inch depth (rate above 60 is too poorly drained for septic leach field)
- All dead shrubs in adjacent park are in wet poorly drained soils

Soil Physical Properties

- Very homogenous fine sand
- Soil moisture uniformly low (7.6%)
- Bulk and grain density values are in extremely narrow range-homogenous soils
- Aver. Bulk density=1.70 g/cc well above 1.65 where soils are considered compacted
- Total and air filled porosity noticeably increases in shallow soils (15% to 26%)
- TOC using Walkey-Black method averaged 3800 mg/kg
- High air permeability (2300 millidarcies)
- Hydraulic conductivity averages 2.6×10^{-5}

Direct Push Soil Gas Sampling

Street

Location of soil gas (SG) and soil (S) samples collected at Site 1 in Santa Maria, CA.

Subslab Sampling in Garage

Soil Gas Sampling Results

Site 1

	<u> </u>	<u> </u>	
	e depth	Methane	(ppmv)
1.	0.5 ft below slab		12
2.	3 ft below slab	8,	300
3.	Outside 1ft	1,	700
4.	Outside 3ft	180,	000

Site 2

Sample depth		 Methane	(ppmv)
1. 0.5 ft b	elow slab		<10
2. 3 ft belo	ow slab	11	,000
3. Outside	1ft		45
4 Outside	5ft	120	000

Soil Gas Vertical Profiles

Back Yard

Under Slab

Soil Gas Vertical Profiles

Analysis of Soil Gas Data

- ◆ No complete pathway is present in any vertical profile collected-high oxygen concentrations at all depths of two feet or less
- ◆ Using EPA guidance for estimating vapor intrusion at two typical sites:
 - ✓ Calculated values are 2,000 to 3,000 times below LEL using highest methane below slab
 - ✓ Calculated values are more than 50,000 times below LEL for samples measured directly below the slab

Delta 13C CH₄ per mil

Sources of gases as defined in Coleman (1994)

Conclusions

- Plant stress is result of highly compacted soils
- Methane is biogenic gas produced by relatively recent microbiological activity
- Process driving upward migration of methane is diffusion (no pressure drive)
- No complete vertical pathway exists for upward migrating methane
- No measurable hydrocarbon gases in indoor air
- No risk for hydrocarbon gases to accumulate to levels that pose a risk to human health or safety

Isotech Gas Data SG-4

- $O_2 = 2.54\%$
- **♦** *CO*₂ = 35.19%
- \rightarrow N₂ = 38.9%
- \diamond C1 = 22.9%
- ◆ C2 through C6+ = 0%
- \bullet Delta ¹³C1 = -57.18 per mil
- \rightarrow Delta DC1 = -328.4 per mil
- \rightarrow ¹⁴C pMC = 109%

Discussion Points

- Effect of asphaltic chips on TPH values as measured by two different techniques
- Effect of moisture barriers on methane contents in shallow soils
- High concentration vs low volume
- Under slab vs outside slab soil gas
- Sources of methane-young organic matter can generate methane quickly

